skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Seong_H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Both experimental results and theoretical models suggest the decisive role of the filler–matrix interfaces on the dielectric, piezoelectric, pyroelectric, and electrocaloric properties of ferroelectric polymer nanocomposites. However, there remains a lack of direct structural evidence to support the so‐called interfacial effect in dielectric nanocomposites. Here, a chemical mapping of the interfacial coupling between the nanofiller and the polymer matrix in ferroelectric polymer nanocomposites by combining atomic force microscopy–infrared spectroscopy (AFM–IR) with first‐principles calculations and phase‐field simulations is provided. The addition of ceramic fillers into a ferroelectric polymer leads to augmentation of the local conformational disorder in the vicinity of the interface, resulting in the local stabilization of the all‐transconformation (i.e., the polar β phase). The formation of highly polar and inhomogeneous interfacial regions, which is further enhanced with a decrease of the filler size, has been identified experimentally and verified by phase‐field simulations and density functional theory (DFT) calculations. This work offers unprecedented structural insights into the configurational disorder‐induced interfacial effect and will enable rational design and molecular engineering of the filler–matrix interfaces of electroactive polymer nanocomposites to boost their collective properties. 
    more » « less
  2. Abstract Langmuir–Blodgett (LB) film deposition gives an opportunity to control the packing density and orientation of anisotropic nanoparticles at a monolayer level, allowing accurate characterization of their anisotropic material properties. The uniaxial deposition of rod‐shaped cellulose nanocrystals (CNCs) over a macroscopically large area is achieved by aligning the long axis of CNCs on the LB trough with the direction of the maximum drag force within the meniscus during the vertical pulling of the substrate from the LB trough. On the uniaxially‐aligned LB films, anisotropic linear and non‐linear optical properties of CNCs are obtained using Mueller matrix spectroscopy and sum frequency generation spectroscopy, respectively, and explained with time‐dependent density functional theory calculations. Also, the frictional anisotropy of the LB film is measured using atomic force microscopy and explained theoretically. The findings of this study will be valuable for preparation of anisotropic nanoparticle thin films with uniform arrangements and utilization of their anisotropic material properties. 
    more » « less